Introducing trusses

Tomasz Brzeziński

Swansea University & University of Białystok

Keele, June 2019

References:

- ▶ TB, *Trusses: between braces and rings*, TAMS (2019)
- ► TB, *Towards semi-trusses*, Rev. Roumaine Math. Pures Appl. (2018)
- ► TB, *Trusses: Paragons, ideals and modules*, submitted (2019)
- TB & B Rybolowicz On the category of modules over trusses, in preparation.

Aim and philosophy:

Aim: To present an algebraic framework for studying braces and rings on equal footing.

Philosophy:

Aim and philosophy:

Aim: To present an algebraic framework for studying braces and rings on equal footing.

Philosophy:

Herds (or heaps or torsors)

H. Prüfer (1924), R. Baer (1929)

Definition

A *herd* (or *heap* or *torsor*) is a nonempty set *A* together with a ternary operation

$$[-,-,-]: \mathbf{A} \times \mathbf{A} \times \mathbf{A} \to \mathbf{A},$$

such that for all $a_i \in A$, i = 1, ..., 5,

$$[[a_1, a_2, a_3], a_4, a_5] = [a_1, a_2, [a_3, a_4, a_5]],$$

•

$$[a_1, a_2, a_2] = a_1 = [a_2, a_2, a_1].$$

A herd (A, [-, -, -]) is said to be abelian if

$$[a, b, c] = [c, b, a], \text{ for all } a, b, c \in A.$$

Herds (or heaps or torsors)

H. Prüfer (1924), R. Baer (1929)

Definition

A *herd* (or *heap* or *torsor*) is a nonempty set A together with a ternary operation

$$[-,-,-]: \mathbf{A} \times \mathbf{A} \times \mathbf{A} \to \mathbf{A},$$

such that for all $a_i \in A$, i = 1, ..., 5,

$$[[a_1, a_2, a_3], a_4, a_5] = [a_1, a_2, [a_3, a_4, a_5]],$$

▶

$$[a_1, a_2, a_2] = a_1 = [a_2, a_2, a_1].$$

A herd (A, [-, -, -]) is said to be *abelian* if

$$[a, b, c] = [c, b, a],$$
 for all $a, b, c \in A$.

Herds are in '1-1' correspondence with groups

If (A, ⋄) is a (abelian) group, then A is a (abelian) herd with operation

$$[a,b,c]_{\diamond}=a\diamond b^{\diamond}\diamond c.$$

Notation: $\mathcal{H}(A, \diamond)$.

▶ Let (A, [-, -, -]) be a (abelian) herd. For all $e \in A$,

$$a \diamond_e b := [a, e, b],$$

makes A into (abelian) group (with identity e and the inverse mapping $a \mapsto [e, a, e]$). Notation: $\mathcal{G}(A, e)$.

- ► Note:
 - \triangleright $\mathcal{G}(A, e) \cong \mathcal{G}(A, f);$
 - ▶ $\mathcal{H} \circ \mathcal{G} = \mathrm{id}$, i.e., irrespective of e: $[a, b, c]_{\diamond_e} = [a, b, c]$.

Herds are in '1-1' correspondence with groups

If (A, ⋄) is a (abelian) group, then A is a (abelian) herd with operation

$$[a,b,c]_{\diamond}=a\diamond b^{\diamond}\diamond c.$$

Notation: $\mathcal{H}(A, \diamond)$.

▶ Let (A, [-, -, -]) be a (abelian) herd. For all $e \in A$,

$$a \diamond_e b := [a, e, b],$$

makes A into (abelian) group (with identity e and the inverse mapping $a \mapsto [e, a, e]$). Notation: $\mathcal{G}(A, e)$.

- ► Note:
 - \triangleright $\mathcal{G}(A, e) \cong \mathcal{G}(A, f);$
 - ▶ $\mathcal{H} \circ \mathcal{G} = \mathrm{id}$, i.e., irrespective of e: $[a, b, c]_{\diamond_e} = [a, b, c]$.

Herds are in '1-1' correspondence with groups

If (A, ⋄) is a (abelian) group, then A is a (abelian) herd with operation

$$[a,b,c]_{\diamond}=a\diamond b^{\diamond}\diamond c.$$

Notation: $\mathcal{H}(A, \diamond)$.

▶ Let (A, [-, -, -]) be a (abelian) herd. For all $e \in A$,

$$a \diamond_e b := [a, e, b],$$

makes A into (abelian) group (with identity e and the inverse mapping $a \mapsto [e, a, e]$). Notation: $\mathcal{G}(A, e)$.

- Note:
 - ▶ $\mathcal{G}(A, e) \cong \mathcal{G}(A, f)$;
 - ▶ $\mathcal{H} \circ \mathcal{G} = \text{id}$, i.e., irrespective of e: $[a, b, c]_{\diamond_e} = [a, b, c]$.

Herds are 'groups without specified identity'

► There if a forgetful functor

$$\text{Grp} \longrightarrow \text{Set}_*.$$

▶ Morphisms from (A, [-, -, -]) to (B, [-, -, -]) are functions $f: A \rightarrow B$ respecting ternary operations:

$$f([a, b, c]) = [f(a), f(b), f(c)].$$

► There is a forgetful functor

$$\mathsf{Hrd} \longrightarrow \mathsf{Set},$$

but not to the category of based sets.

► Worth noting:

$$\operatorname{Aut}(A, [-, -, -]_{\diamond}) = \operatorname{Hol}(A, \diamond).$$

Herds are 'groups without specified identity'

There if a forgetful functor

$$\text{Grp} \longrightarrow \text{Set}_*.$$

▶ Morphisms from (A, [-, -, -]) to (B, [-, -, -]) are functions $f : A \rightarrow B$ respecting ternary operations:

$$f([a, b, c]) = [f(a), f(b), f(c)].$$

There is a forgetful functor

$$Hrd \longrightarrow Set$$
,

but not to the category of based sets.

► Worth noting:

$$\operatorname{Aut}(A, [-, -, -]_{\diamond}) = \operatorname{Hol}(A, \diamond).$$

Herds are 'groups without specified identity'

► There if a forgetful functor

$$\text{Grp} \longrightarrow \text{Set}_*.$$

▶ Morphisms from (A, [-, -, -]) to (B, [-, -, -]) are functions $f : A \rightarrow B$ respecting ternary operations:

$$f([a, b, c]) = [f(a), f(b), f(c)].$$

There is a forgetful functor

$$Hrd \longrightarrow Set$$
,

but not to the category of based sets.

Worth noting:

$$\operatorname{Aut}(A, [-, -, -]_{\diamond}) = \operatorname{Hol}(A, \diamond).$$

Constructions on herds

▶ Quotient herds: A subherd S of A (i.e., $[s, s', s''] \in S$, for all $s, s', s'' \in S$) defines an equivalence relation \sim_S on A:

$$a \sim_S b \equiv \exists s \in S, [a, b, s] \in S$$

$$\equiv \forall s \in S, [a, b, s] \in S.$$

If A is abelian (or S is normal), $A/S := A/\sim_S$ is a herd.

- ► Free herds: *X* a set.
 - W(X) reduced (no consecutive identical letters) words in X of odd length.
 - ▶ Operation: $[w_1, w_2, w_3] = w_1 w_2^t w_3$ followed by pruning.

Altogether: a free herd on X. Can be abelianised to give $\mathcal{A}(X)$.

Constructions on herds

▶ Quotient herds: A subherd S of A (i.e., $[s, s', s''] \in S$, for all $s, s', s'' \in S$) defines an equivalence relation \sim_S on A:

$$a \sim_S b \equiv \exists s \in S, [a, b, s] \in S$$

$$\equiv \forall s \in S, [a, b, s] \in S.$$

If A is abelian (or S is normal), $A/S := A/\sim_S$ is a herd.

- Free herds: X a set.
 - W(X) reduced (no consecutive identical letters) words in X of odd length.
 - ▶ Operation: $[w_1, w_2, w_3] = w_1 w_2^t w_3$ followed by pruning.

Altogether: a free herd on X. Can be abelianised to give A(X).

Constructions on herds (cd)

- Coproduct:
 - ▶ A, B abelian herds.
 - ▶ $A \sqcup B$ is a free abelian herd $\mathcal{A}(A \sqcup B)$ modulo relations determined by $[---]_A$ and $[---]_B$.

$$extbf{A} \sqcup extbf{B} = \mathcal{H}\left(\mathcal{G}(extbf{A}, extbf{e}_{ extbf{A}}) \oplus \mathcal{G}(extbf{B}, extbf{e}_{ extbf{B}}) \oplus \mathbb{Z}
ight).$$

► <u>Kernels</u>: A *kernel* of a herd morphism f : A → B is defined as

$$\ker_e f = f^{-1}(e) = \{a \in A \mid f(a) = e\}, \qquad e \in \operatorname{Im}(f) \subseteq B.$$

- ▶ ker_e *f* is a (normal) sub-herd of *A*.
- ▶ Different choices of *e* lead to isomorphic sub-herds.
- ightharpoonup $\sim_{\ker_e f}$ is the same as the kernel relation,

$$a \sim_{\ker_a f} b$$
 iff $f(a) = f(b)$.

Constructions on herds (cd)

- Coproduct:
 - ► A, B abelian herds.
 - ▶ $A \sqcup B$ is a free abelian herd $\mathcal{A}(A \sqcup B)$ modulo relations determined by $[---]_A$ and $[---]_B$.

$$\textbf{\textit{A}} \sqcup \textbf{\textit{B}} = \mathcal{H} \left(\mathcal{G}(\textbf{\textit{A}}, \textbf{\textit{e}}_{\textbf{\textit{A}}}) \oplus \mathcal{G}(\textbf{\textit{B}}, \textbf{\textit{e}}_{\textbf{\textit{B}}}) \oplus \mathbb{Z} \right).$$

► <u>Kernels</u>: A *kernel* of a herd morphism f : A → B is defined as

$$\ker_e f = f^{-1}(e) = \{a \in A \mid f(a) = e\}, \qquad e \in \operatorname{Im}(f) \subseteq B.$$

- ▶ ker_e f is a (normal) sub-herd of A.
- Different choices of e lead to isomorphic sub-herds.
- $\sim_{\ker_a f}$ is the same as the kernel relation,

$$a \sim_{\ker_a f} b$$
 iff $f(a) = f(b)$.

Trusses

A left skew truss is a herd (A, [-, -, -]) together with an associative operation · that left distributes over [-, -, -], i.e.,

$$a \cdot [b, c, d] = [a \cdot b, a \cdot c, a \cdot d].$$

- ▶ If (A, [-, -, -]) is abelian, then we have a *left truss*.
- Right (skew) trusses are defined similarly.
- ▶ A *truss* is a triple $(A, [-, -, -], \cdot)$ that is both left and right truss.
- A morphism of (left/right skew) trusses is a function preserving both the ternary and binary operations.

Trusses: between braces and (near-)rings

Let $(A, [-, -, -], \cdot)$ be a left skew truss.

Assume that (A, \cdot) is a group with a neutral element e. Then (A, \diamond_e, \cdot) is a left skew brace, i.e.

$$a \cdot (b \diamond_e c) = (a \cdot b) \diamond_e a^{\diamond_e} \diamond_e (a \cdot c).$$

▶ Assume that $e \in A$ is such that

$$a \cdot e = e$$
, for all $a \in A$.

Then (A, \diamond_e, \cdot) is a left near-ring, i.e.

$$a \cdot (b \diamond_e c) = (a \cdot b) \diamond_e (a \cdot c)$$

Trusses: between braces and (near-)rings

Let $(A, [-, -, -], \cdot)$ be a left skew truss.

▶ Assume that (A, \cdot) is a group with a neutral element e. Then (A, \diamond_e, \cdot) is a left skew brace, i.e.

$$a \cdot (b \diamond_e c) = (a \cdot b) \diamond_e a^{\diamond_e} \diamond_e (a \cdot c).$$

Assume that $e \in A$ is such that

$$a \cdot e = e$$
, for all $a \in A$.

Then (A, \diamond_e, \cdot) is a left near-ring, i.e.

$$a \cdot (b \diamond_{e} c) = (a \cdot b) \diamond_{e} (a \cdot c)$$

Trusses: between braces and (near-)rings

Let $(A, [-, -, -], \cdot)$ be a left skew truss.

▶ Assume that (A, \cdot) is a group with a neutral element e. Then (A, \diamond_e, \cdot) is a left skew brace, i.e.

$$a \cdot (b \diamond_e c) = (a \cdot b) \diamond_e a^{\diamond_e} \diamond_e (a \cdot c).$$

Assume that *e* ∈ *A* is such that

$$a \cdot e = e$$
, for all $a \in A$.

Then (A, \diamond_e, \cdot) is a left near-ring, i.e.

$$a \cdot (b \diamond_e c) = (a \cdot b) \diamond_e (a \cdot c).$$

Trusses: generalised distributivity

Let (A, \diamond) be a group and (A, \cdot) be a semigroup. TFAE:

▶ There exists $\sigma : A \rightarrow A$, such that

$$\mathbf{a} \cdot (\mathbf{b} \diamond \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) \diamond \sigma(\mathbf{a})^{\diamond} \diamond (\mathbf{a} \cdot \mathbf{c}).$$

▶ There exists $\lambda : A \times A \rightarrow A$, such that,

$$a \cdot (b \diamond c) = (a \cdot b) \diamond \lambda(a, c).$$

▶ There exists μ : $A \times A \rightarrow A$, such that

$$a \cdot (b \diamond c) = \mu(a, b) \diamond (a \cdot c).$$

▶ There exist κ , $\hat{\kappa}$: $A \times A \rightarrow A$, such that

$$a \cdot (b \diamond c) = \kappa(a, b) \diamond \hat{\kappa}(a, c).$$

• $(A, [-, -, -]_{\diamond}, \cdot)$ is a left skew truss.

Trusses from split-exact sequences of groups

Let (A, ⋄) be a middle term of a split-exact sequence of groups

$$1 \longrightarrow G \longrightarrow A \xrightarrow{\alpha}_{\beta} H \longrightarrow 1$$

▶ Let · be an operation on A defined as

$$a \cdot b = a \diamond \beta(\alpha(b))$$
 or $a \cdot b = \beta(\alpha(a)) \diamond b$.

▶ Then $(A, [-, -, -]_{\diamond}, \cdot)$ is a left skew truss.

The endomorphism truss

- Let (A, [-, -, -]) be an abelian herd.
- ▶ Set $\mathcal{E}(A) := \text{End}(A, [-, -, -]).$
- \triangleright $\mathcal{E}(A)$ is an abelian herd with inherited operation

$$[f, g, h](a) = [f(a), g(a), h(a)].$$

▶ $\mathcal{E}(A)$ together with [-,-,-] and composition \circ is a truss.

Notes on the endomorphism truss:

- ▶ Choosing the group structure $f \diamond_{id} g$ on $\mathcal{E}(A)$, we obtain a two-sided brace-type distributive law between \diamond_{id} and \circ .
- ▶ Fix $e \in A$, and let $\varepsilon : A \to A$, be given by $\varepsilon : a \mapsto e$. Then $\varepsilon \in \mathcal{E}(A)$, and choosing the group structure $f \diamond_{\varepsilon} g$ on $\mathcal{E}(A)$ we get a ring $(\mathcal{E}(A), \diamond_{\varepsilon}, \circ)$.
- The left multiplication map

$$\ell: A \to \mathcal{E}(A), \qquad a \mapsto [b \mapsto a \cdot b],$$

is a morphism of trusses.

Truss structures on $(\mathbb{Z}, [---]_+)$:

Theorem

(1) Non-commutative truss structures, ,

$$m \cdot n = m$$
 or $m \cdot n = n$, $\forall m, n \in \mathbb{Z}$.

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$\mathcal{I}_2(\mathbb{Z})=\{ extbf{\emph{e}} \in extit{\emph{M}}_2(\mathbb{Z}) \mid extbf{\emph{e}}^2= extbf{\emph{e}}, ext{ Tr } extbf{\emph{e}}=1 \}.$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

$$D_{\infty} = \left\{ \begin{pmatrix} 1 & 0 \\ k & \pm 1 \end{pmatrix} \mid k \in \mathbb{Z} \right\}.$$

Truss structures on $(\mathbb{Z}, [---]_+)$:

Theorem

(1) Non-commutative truss structures, ,

$$m \cdot n = m$$
 or $m \cdot n = n$, $\forall m, n \in \mathbb{Z}$.

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$\mathcal{I}_2(\mathbb{Z}) = \{ \textbf{\textit{e}} \in \textit{M}_2(\mathbb{Z}) \mid \textbf{\textit{e}}^2 = \textbf{\textit{e}}, \; \mathrm{Tr} \; \textbf{\textit{e}} = 1 \}.$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

$$D_{\infty} = \left\{ \begin{pmatrix} 1 & 0 \\ k & \pm 1 \end{pmatrix} \mid k \in \mathbb{Z} \right\}.$$

Truss structures on $(\mathbb{Z}, [---]_+)$:

Theorem

(1) Non-commutative truss structures, ,

$$m \cdot n = m$$
 or $m \cdot n = n$, $\forall m, n \in \mathbb{Z}$.

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$\mathcal{I}_2(\mathbb{Z}) = \{e \in M_2(\mathbb{Z}) \mid e^2 = e, \text{ Tr } e = 1\}.$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

$$D_{\infty} = \left\{ \begin{pmatrix} 1 & 0 \\ k & \pm 1 \end{pmatrix} \mid k \in \mathbb{Z} \right\}.$$

Many techniques and constructions familiar in ring theory can be applied to trusses **but not necessarily in a straightforward way**.

▶ An *ideal* of $(A, [-, -, -], \cdot)$ is a sub-herd X such that,

$$a \cdot x, x \cdot a \in X,$$
 for all $x \in X, a \in A$.

▶ The quotient $A/X := A/\sim_X$ is a truss with operations

$$[\overline{a},\overline{b},\overline{c}]=\overline{[a,b,c]},\quad \overline{a}\cdot \overline{b}=\overline{a\cdot b}.$$

► However... a kernel of a truss homomorphism is not necessarily an ideal.

Many techniques and constructions familiar in ring theory can be applied to trusses **but not necessarily in a straightforward way**.

▶ An *ideal* of $(A, [-, -, -], \cdot)$ is a sub-herd X such that,

$$a \cdot x, \ x \cdot a \in X,$$
 for all $x \in X, a \in A$.

▶ The quotient $A/X := A/\sim_X$ is a truss with operations

$$[\overline{a}, \overline{b}, \overline{c}] = \overline{[a, b, c]}, \quad \overline{a} \cdot \overline{b} = \overline{a \cdot b}.$$

► However... a kernel of a truss homomorphism is not necessarily an ideal.

Many techniques and constructions familiar in ring theory can be applied to trusses **but not necessarily in a straightforward way**.

▶ An *ideal* of $(A, [-, -, -], \cdot)$ is a sub-herd X such that,

$$a \cdot x, \ \ x \cdot a \in X,$$
 for all $x \in X, a \in A$.

▶ The quotient $A/X := A/\sim_X$ is a truss with operations

$$[\overline{a}, \overline{b}, \overline{c}] = \overline{[a, b, c]}, \quad \overline{a} \cdot \overline{b} = \overline{a \cdot b}.$$

► However... a kernel of a truss homomorphism is not necessarily an ideal.

Many techniques and constructions familiar in ring theory can be applied to trusses **but not necessarily in a straightforward way**.

▶ An *ideal* of $(A, [-, -, -], \cdot)$ is a sub-herd X such that,

$$a \cdot x, \ \ x \cdot a \in X,$$
 for all $x \in X, a \in A$.

▶ The quotient $A/X := A/\sim_X$ is a truss with operations

$$[\overline{a}, \overline{b}, \overline{c}] = \overline{[a, b, c]}, \quad \overline{a} \cdot \overline{b} = \overline{a \cdot b}.$$

However... a kernel of a truss homomorphism is not necessarily an ideal.

A (left, right) paragon in A is a sub-herd P such that, for all $p, q \in P$ and $a \in A$,

$$[ap, aq, q], [pa, qa, q] \in P.$$

- Kernel is a paragon.
- ► A/P is a truss.
- ▶ For example, the set of odd integers is a paragon in \mathbb{Z} .
- In case of braces: paragon is what is called an ideal.

Modules of trusses

▶ A *left module* over a truss $(A, [-, -, -], \cdot)$ is an abelian herd (M, [-, -, -]) together with a morphism of trusses

$$\pi_{M}: A \to \mathcal{E}(M).$$

► The *action* of *A* on *M*, $a \triangleright m := \pi_M(a)(m)$, satisfies: Distributive laws:

$$a\triangleright[m_1,m_2,m_3]=[a\triangleright m_1,a\triangleright m_2,a\triangleright m_3],$$

$$[a,b,c]\triangleright m=[a\triangleright m,b\triangleright m,c\triangleright m],$$

Associative law:

$$a\triangleright(b\triangleright m)=(a\cdot b)\triangleright m.$$

Category of modules

- Morphisms of modules over trusses are defined as functions preserving the ternary operations and actions; category A – Mod.
- Right modules, bimodules defined analogously.
- ▶ A Mod has a terminal object $T = \{0\}$ but not an initial object.
- ▶ A Mod has cokernels, i.e. pushouts of

Category of modules

- ► A Mod has quotients:
 - Take a submodule N of M.
 - ▶ Define an equivalence relation, for $m_1, m_2 \in M$,

$$m_1 \sim_N m_2$$
 iff $\exists n \in N, [m_1, m_2, n] \in N.$

 $\overline{M} := M/N := M/\sim_N,$

$$[\overline{m_1}, \overline{m_2}, \overline{m_3}] = [\overline{m_1}, \overline{m_2}, \overline{m_3}], \quad a \triangleright \overline{m} = \overline{a \triangleright m}.$$

▶ Given a morphism of *A*-modules $f: M \rightarrow N$,

$$coker(f) = N/Im(f).$$

Induced submodules

Many constructions of modules over rings can be applied to trusses **but not necessarily in a straightforward way**.

▶ An *A*-module *M* an *induced* action: fix $e \in M$,

$$a \triangleright_e m = [a \triangleright m, a \triangleright e, e].$$

▶ The element *e* is an *absorber* for \triangleright_e , i.e.

$$\forall a \in A, \quad a \triangleright_e e = e,$$

hence \triangleright_e distributes over the binary operation \diamond_e on M.

- ▶ Different choices of *e* yield isomorphic modules.
- ▶ The kernel of $f: M \rightarrow N$ is an induced submodule of M.
- ▶ If N is a sub-herd of M, then M/N has an A-module structure such that $M \to M/N$ is a module morphism if and only if N is an induced submodule of M.

Induced submodules

Many constructions of modules over rings can be applied to trusses **but not necessarily in a straightforward way**.

▶ An A-module M an induced action: fix $e \in M$,

$$a \triangleright_e m = [a \triangleright m, a \triangleright e, e].$$

▶ The element e is an absorber for \triangleright_e , i.e.

$$\forall a \in A, \quad a \triangleright_e e = e,$$

hence \triangleright_e distributes over the binary operation \diamond_e on M.

- Different choices of e yield isomorphic modules.
- ▶ The kernel of $f: M \rightarrow N$ is an induced submodule of M.
- ▶ If N is a sub-herd of M, then M/N has an A-module structure such that $M \to M/N$ is a module morphism if and only if N is an induced submodule of M.

Endomorphism and matrix trusses

► For any A-module M,

$$\operatorname{End}_{\mathcal{A}}(M)$$

is a truss in the same way as endomorphisms of an abelian herd.

▶ A^n is an A-module: for all $a = (a_i), b = (b_i), c = (c_i) \in A^n$, $x \in A$,

$$[a,b,c]_i=[a_i,b_i,c_i], \qquad (x\triangleright a)_i=x\triangleright a_i.$$

- ► $M_n(A) := \operatorname{End}_A(A^n)$ is a (matrix) truss.
- End_A(Aⁿ) satisfy a brace-type distributive law between ⋄_{id} and ⋄.