Introducing trusses

Tomasz Brzeziński
Swansea University \& University of Białystok

Keele, June 2019

References:

- TB, Trusses: between braces and rings, TAMS (2019)
- TB, Towards semi-trusses, Rev. Roumaine Math. Pures Appl. (2018)
- TB, Trusses: Paragons, ideals and modules, submitted (2019)
- TB \& B Rybołowicz On the category of modules over trusses, in preparation.

Aim and philosophy:

Aim: To present an algebraic framework for studying braces and rings on equal footing.

Philosophy:

> ‘Identity-free’ framework

Specify identities

Aim and philosophy:

Aim: To present an algebraic framework for studying braces and rings on equal footing.

Philosophy:

Herds (or heaps or torsors)

H. Prüfer (1924), R. Baer (1929)

Definition
A herd (or heap or torsor) is a nonempty set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,

$$
\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]
$$

$$
\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]
$$

A herd $(A,[-,-,-])$ is said to be abelian if

Herds (or heaps or torsors)

H. Prüfer (1924), R. Baer (1929)

Definition
A herd (or heap or torsor) is a nonempty set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,

$$
\begin{gathered}
{\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]} \\
{\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]}
\end{gathered}
$$

A herd $(A,[-,-,-])$ is said to be abelian if

$$
[a, b, c]=[c, b, a], \quad \text { for all } a, b, c \in A
$$

Herds are in ' $1-1$ ' correspondence with groups

- If (A, \diamond) is a (abelian) group, then A is a (abelian) herd with operation

$$
[a, b, c]_{\diamond}=a \diamond b^{\diamond} \diamond c
$$

Notation: $\mathcal{H}(A, \diamond)$.

- Let $(A,[-,-,-])$ be a (abelian) herd. For all $e \in A$,

$$
a \diamond_{e} b:=[a, e, b],
$$

makes A into (abelian) group (with identity e and the inverse mapping $a \mapsto[e, a, e])$. Notation: $\mathcal{G}(A, e)$.

- Note:

```
- \mathcal{G}}(A,e)\cong\mathcal{G}(A,f)
    * H}\circ\mathcal{G}=\mathrm{ id, i.e., irrespective of e: [a,b,c]}\mp@subsup{|}{0}{}=[a,b,c]
```


Herds are in ' $1-1$ ' correspondence with groups

- If (A, \diamond) is a (abelian) group, then A is a (abelian) herd with operation

$$
[a, b, c]_{\diamond}=a \diamond b^{\diamond} \diamond c
$$

Notation: $\mathcal{H}(A, \diamond)$.

- Let $(A,[-,-,-])$ be a (abelian) herd. For all $e \in A$,

$$
a \diamond_{e} b:=[a, e, b]
$$

makes A into (abelian) group (with identity e and the inverse mapping $a \mapsto[e, a, e])$. Notation: $\mathcal{G}(A, e)$.

Herds are in ' $1-1$ ' correspondence with groups

- If (A, \diamond) is a (abelian) group, then A is a (abelian) herd with operation

$$
[a, b, c]_{\diamond}=a \diamond b^{\diamond} \diamond c
$$

Notation: $\mathcal{H}(A, \diamond)$.

- Let $(A,[-,-,-])$ be a (abelian) herd. For all $e \in A$,

$$
a \diamond_{e} b:=[a, e, b]
$$

makes A into (abelian) group (with identity e and the inverse mapping $a \mapsto[e, a, e])$. Notation: $\mathcal{G}(A, e)$.

- Note:
- $\mathcal{G}(A, e) \cong \mathcal{G}(A, f)$;
- $\mathcal{H} \circ \mathcal{G}=$ id, i.e., irrespective of $e:[a, b, c]_{\nabla_{e}}=[a, b, c]$.

Herds are 'groups without specified identity'

- There if a forgetful functor

$$
\text { Grp } \longrightarrow \text { Set }_{*} .
$$

- Morphisms from $(A,[-,-,-])$ to $(B,[-,-,-])$ are functions $f: A \rightarrow B$ respecting ternary operations:

$$
f([a, b, c])=[f(a), f(b), f(c)] .
$$

- There is a forgetful functor

$$
\text { Hra } \longrightarrow \text { Set, }
$$

but not to the category of based sets.

- Worth noting:

$$
\operatorname{Aut}\left(A,[-,-,-]_{\diamond}\right)=\operatorname{Hol}(A, \diamond)
$$

Herds are 'groups without specified identity'

- There if a forgetful functor

$$
\text { Grp } \longrightarrow \text { Set }_{*}
$$

- Morphisms from $(A,[-,-,-])$ to $(B,[-,-,-])$ are functions $f: A \rightarrow B$ respecting ternary operations:

$$
f([a, b, c])=[f(a), f(b), f(c)]
$$

- There is a forgetful functor

$$
\text { Hrd } \longrightarrow \text { Set }
$$

but not to the category of based sets.

- Worth noting:
$\operatorname{Aut}\left(A,[-,-,-]_{\diamond}\right)=\operatorname{Hol}(A, \diamond)$.

Herds are 'groups without specified identity'

- There if a forgetful functor

$$
\text { Grp } \longrightarrow \text { Set }_{*}
$$

- Morphisms from $(A,[-,-,-])$ to $(B,[-,-,-])$ are functions $f: A \rightarrow B$ respecting ternary operations:

$$
f([a, b, c])=[f(a), f(b), f(c)]
$$

- There is a forgetful functor

$$
\text { Hrd } \longrightarrow \text { Set }
$$

but not to the category of based sets.

- Worth noting:

$$
\operatorname{Aut}\left(A,[-,-,-]_{\diamond}\right)=\operatorname{Hol}(A, \diamond)
$$

Constructions on herds

- Quotient herds: A subherd S of A (i.e., $\left[s, s^{\prime}, s^{\prime \prime}\right] \in S$, for all $s, s^{\prime}, s^{\prime \prime} \in S$) defines an equivalence relation \sim_{s} on A :

$$
\begin{aligned}
a \sim_{s} b & \equiv \exists s \in S,[a, b, s] \in S \\
& \equiv \forall s \in S,[a, b, s] \in S .
\end{aligned}
$$

If A is abelian (or S is normal), $A / S:=A / \sim_{S}$ is a herd.

- Free herds: X - a set.
- $W(X)$ reduced (no consecutive identical letters) words in X
of odd length.
- Operation: $\left[w_{1}, w_{2}, w_{3}\right]=w_{1} w_{2}^{+} w_{3}$ followed by pruning. Altogether: a free herd on X. Can be abelianised to give

Constructions on herds

- Quotient herds: A subherd S of A (i.e., $\left[s, s^{\prime}, s^{\prime \prime}\right] \in S$, for all $s, s^{\prime}, s^{\prime \prime} \in S$) defines an equivalence relation \sim_{s} on A :

$$
\begin{aligned}
a \sim_{s} b & \equiv \exists s \in S,[a, b, s] \in S \\
& \equiv \forall s \in S,[a, b, s] \in S .
\end{aligned}
$$

If A is abelian (or S is normal), $A / S:=A / \sim_{S}$ is a herd.

- Free herds: X - a set.
- $W(X)$ reduced (no consecutive identical letters) words in X of odd length.
- Operation: $\left[w_{1}, w_{2}, w_{3}\right]=w_{1} w_{2}^{t} w_{3}$ followed by pruning. Altogether: a free herd on X. Can be abelianised to give $\mathcal{A}(X)$.

Constructions on herds (cd)

- Coproduct:
- A, B - abelian herds.
- $A \sqcup B$ is a free abelian herd $\mathcal{A}(A \sqcup B)$ modulo relations determined by $[--]_{A}$ and $[---]_{B}$.
-

$$
A \sqcup B=\mathcal{H}\left(\mathcal{G}\left(A, e_{A}\right) \oplus \mathcal{G}\left(B, e_{B}\right) \oplus \mathbb{Z}\right)
$$

- Kernels: A kernel of a herd morphism $f: A \rightarrow B$ is defined as

- $\operatorname{ker}_{e} f$ is a (normal) sub-herd of A.
- Different choices of e lead to isomorphic sub-herds. - $\sim_{k^{2} e_{e} f}$ is the same as the kernel relation,

$$
a \sim_{\text {ker }_{e} f} b \quad \text { iff } \quad f(a)=f(b) .
$$

Constructions on herds (cd)

- Coproduct:
- A, B - abelian herds.
- $A \sqcup B$ is a free abelian herd $\mathcal{A}(A \sqcup B)$ modulo relations determined by $[---]_{A}$ and $[---]_{B}$.
-

$$
A \sqcup B=\mathcal{H}\left(\mathcal{G}\left(A, e_{A}\right) \oplus \mathcal{G}\left(B, e_{B}\right) \oplus \mathbb{Z}\right) .
$$

- Kernels: A kernel of a herd morphism $f: A \rightarrow B$ is defined as

$$
\operatorname{ker}_{e} f=f^{-1}(e)=\{a \in A \mid f(a)=e\}, \quad e \in \operatorname{Im}(f) \subseteq B
$$

- $\operatorname{ker}_{e} f$ is a (normal) sub-herd of A.
- Different choices of e lead to isomorphic sub-herds.
- $\sim_{\mathrm{ker}_{e} f}$ is the same as the kernel relation,

$$
a \sim_{\text {ker }_{e} f} b \quad \text { iff } \quad f(a)=f(b)
$$

Trusses

- A left skew truss is a herd $(A,[-,-,-])$ together with an associative operation that left distributes over $[-,-,-]$, i.e.,

$$
a \cdot[b, c, d]=[a \cdot b, a \cdot c, a \cdot d] .
$$

- If $(A,[-,-,-])$ is abelian, then we have a left truss.
- Right (skew) trusses are defined similarly.
- A truss is a triple $(A,[-,-,-], \cdot)$ that is both left and right truss.
- A morphism of (left/right skew) trusses is a function preserving both the ternary and binary operations.

Trusses: between braces and (near-)rings

Let $(A,[-,-,-], \cdot)$ be a left skew truss.

- Assume that (A, \cdot) is a group with a neutral element e. Then $\left(A, \diamond_{e}, \cdot\right)$ is a left skew brace, i.e.

$$
a \cdot\left(b \hat{\theta}_{e} c\right)=(a \cdot b) \Delta_{e} a^{\rho_{e}} \hat{\Delta}_{e}(a \cdot c) \text {. }
$$

- Assume that $e \in A$ is such that

$$
a \cdot \theta=0, \quad \text { for } a l l a \in A .
$$

Then $\left(A, \diamond_{e}, \cdot\right)$ is a left near-ring, i.e.

$$
a \cdot\left(b \wedge_{0} c\right)=(a \cdot b) \wedge_{\theta}(a \cdot c)
$$

Trusses: between braces and (near-)rings

Let ($A,[-,-,-], \cdot)$ be a left skew truss.

- Assume that (A, \cdot) is a group with a neutral element e. Then $\left(A, \diamond_{e}, \cdot\right)$ is a left skew brace, i.e.

$$
a \cdot\left(b \diamond_{e} c\right)=(a \cdot b) \diamond_{e} a^{\wedge_{e}} \diamond_{e}(a \cdot c) .
$$

- Assume that $e \in A$ is such that

$$
a \cdot \theta=\theta, \quad \text { for } a l l a \in A \text {. }
$$

Then $\left(A, \diamond_{e}, \cdot\right)$ is a left near-ring, i.e.

$$
\left.a \cdot(b\rangle_{e} c\right)=(a \cdot b) \Delta_{e}(a \cdot c)
$$

Trusses: between braces and (near-)rings

Let $(A,[-,-,-], \cdot)$ be a left skew truss.

- Assume that (A, \cdot) is a group with a neutral element e. Then $\left(A, \diamond_{e}, \cdot\right)$ is a left skew brace, i.e.

$$
a \cdot\left(b \diamond_{e} c\right)=(a \cdot b) \diamond_{e} a^{\diamond_{e}} \diamond_{e}(a \cdot c) .
$$

- Assume that $e \in A$ is such that

$$
a \cdot e=e, \quad \text { for all } a \in A
$$

Then $\left(A, \diamond_{e}, \cdot\right)$ is a left near-ring, i.e.

$$
a \cdot\left(b \diamond_{e} c\right)=(a \cdot b) \diamond_{e}(a \cdot c)
$$

Trusses: generalised distributivity

Let (A, \diamond) be a group and (A, \cdot) be a semigroup. TFAE:

- There exists $\sigma: A \rightarrow A$, such that

$$
a \cdot(b \diamond c)=(a \cdot b) \diamond \sigma(a)^{\diamond} \diamond(a \cdot c) .
$$

- There exists $\lambda: A \times A \rightarrow A$, such that,

$$
a \cdot(b \diamond c)=(a \cdot b) \diamond \lambda(a, c) .
$$

- There exists $\mu: A \times A \rightarrow A$, such that

$$
a \cdot(b \diamond c)=\mu(a, b) \diamond(a \cdot c) .
$$

- There exist $\kappa, \hat{\kappa}: A \times A \rightarrow A$, such that

$$
a \cdot(b \diamond c)=\kappa(a, b) \diamond \hat{\kappa}(a, c) .
$$

- $\left(A,[-,-,-]_{\odot}, \cdot\right)$ is a left skew truss.

Trusses from split-exact sequences of groups

- Let (A, \diamond) be a middle term of a split-exact sequence of groups

$$
1 \longrightarrow G \longrightarrow A \underset{\beta}{\stackrel{\alpha}{\longleftrightarrow}} H \longrightarrow 1
$$

- Let • be an operation on A defined as

$$
a \cdot b=a \diamond \beta(\alpha(b)) \quad \text { or } \quad a \cdot b=\beta(\alpha(a)) \diamond b .
$$

- Then $\left(A,[-,-,-]_{\diamond}, \cdot\right)$ is a left skew truss.

The endomorphism truss

- Let $(A,[-,-,-])$ be an abelian herd.
- $\operatorname{Set} \mathcal{E}(A):=\operatorname{End}(A,[-,-,-])$.
- $\mathcal{E}(A)$ is an abelian herd with inherited operation

$$
[f, g, h](a)=[f(a), g(a), h(a)] .
$$

- $\mathcal{E}(A)$ together with $[-,-,-]$ and composition \circ is a truss.

Notes on the endomorphism truss:

- Choosing the group structure $f \diamond_{\text {id }} g$ on $\mathcal{E}(A)$, we obtain a two-sided brace-type distributive law between $\diamond_{\text {id }}$ and \circ.
- Fix $e \in A$, and let $\varepsilon: A \rightarrow A$, be given by $\varepsilon: a \mapsto e$. Then $\varepsilon \in \mathcal{E}(A)$, and choosing the group structure $f \diamond_{\varepsilon} g$ on $\mathcal{E}(A)$ we get a ring $\left(\mathcal{E}(A), \diamond_{\varepsilon}, \circ\right)$.
- The left multiplication map

$$
\ell: A \rightarrow \mathcal{E}(A), \quad a \mapsto[b \mapsto a \cdot b],
$$

is a morphism of trusses.

Truss structures on $\left(\mathbb{Z},[---]_{+}\right)$:

Theorem
(1) Non-commutative truss structures, ,

$$
m \cdot n=m \quad \text { or } \quad m \cdot n=n, \quad \forall m, n \in \mathbb{Z} .
$$

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$
\mathcal{I}_{2}(\mathbb{Z})=\left\{e \in M_{2}(\mathbb{Z}) \mid e^{2}=e, \operatorname{Tr} e=1\right\} .
$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

Truss structures on $\left(\mathbb{Z},[---]_{+}\right)$:

Theorem
(1) Non-commutative truss structures, ,

$$
m \cdot n=m \quad \text { or } \quad m \cdot n=n, \quad \forall m, n \in \mathbb{Z} .
$$

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$
\mathcal{I}_{2}(\mathbb{Z})=\left\{e \in M_{2}(\mathbb{Z}) \mid e^{2}=e, \operatorname{Tr} e=1\right\} .
$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

Truss structures on $\left(\mathbb{Z},[---]_{+}\right)$:

Theorem
(1) Non-commutative truss structures, ,

$$
m \cdot n=m \quad \text { or } \quad m \cdot n=n, \quad \forall m, n \in \mathbb{Z} .
$$

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$
\mathcal{I}_{2}(\mathbb{Z})=\left\{e \in M_{2}(\mathbb{Z}) \mid e^{2}=e, \operatorname{Tr} e=1\right\} .
$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

$$
D_{\infty}=\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
k & \pm 1
\end{array}\right) \right\rvert\, k \in \mathbb{Z}\right\} .
$$

Trusses and ring theory: ideals, quotients, paragons

Many techniques and constructions familiar in ring theory can be applied to trusses but not necessarily in a straightforward way.

- An ideal of $(A,[-,-,-], \cdot)$ is a sub-herd X such that,
- The quotient $A / X:=A / \sim_{x}$ is a truss with operations

$$
[\bar{a}, \bar{b}, \bar{c}]=\overline{[a, b, c}], \quad \bar{a} \cdot \bar{b}=\overline{a \cdot b}
$$

- However... a kernel of a truss homomorphism is not necessarily an ideal.

Trusses and ring theory: ideals, quotients, paragons

Many techniques and constructions familiar in ring theory can be applied to trusses but not necessarily in a straightforward way.

- An ideal of $(A,[-,-,-], \cdot)$ is a sub-herd X such that,

$$
a \cdot x, x \cdot a \in X, \quad \text { for all } x \in X, a \in A
$$

- The quotient $A / X:=A / \sim_{x}$ is a truss with operations

$$
[\bar{a}, \bar{b}, \bar{c}]=\overline{[a, b, c}, \quad \bar{a} \cdot \bar{b}=\overline{a \cdot b} .
$$

- However... a kernel of a truss homomorphism is not necessarily an ideal.

Trusses and ring theory: ideals, quotients, paragons

Many techniques and constructions familiar in ring theory can be applied to trusses but not necessarily in a straightforward way.

- An ideal of $(A,[-,-,-], \cdot)$ is a sub-herd X such that,

$$
a \cdot x, x \cdot a \in X, \quad \text { for all } x \in X, a \in A \text {. }
$$

- The quotient $A / X:=A / \sim_{X}$ is a truss with operations

$$
[\bar{a}, \bar{b}, \bar{c}]=\overline{[a, b, c]}, \quad \bar{a} \cdot \bar{b}=\overline{a \cdot b}
$$

- However... a kernel of a truss homomorphism is not necessarily an ideal.

Trusses and ring theory: ideals, quotients, paragons

Many techniques and constructions familiar in ring theory can be applied to trusses but not necessarily in a straightforward way.

- An ideal of $(A,[-,-,-], \cdot)$ is a sub-herd X such that,

$$
a \cdot x, x \cdot a \in X, \quad \text { for all } x \in X, a \in A
$$

- The quotient $A / X:=A / \sim_{X}$ is a truss with operations

$$
[\bar{a}, \bar{b}, \bar{c}]=\overline{[a, b, c]}, \quad \bar{a} \cdot \bar{b}=\overline{a \cdot b}
$$

- However... a kernel of a truss homomorphism is not necessarily an ideal.

Trusses and ring theory: ideals, quotients, paragons

A (left, right) paragon in A is a sub-herd P such that, for all $p, q \in P$ and $a \in A$,

$$
[a p, a q, q], \quad[p a, q a, q] \in P
$$

- Kernel is a paragon.
- A / P is a truss.
- For example, the set of odd integers is a paragon in \mathbb{Z}.
- In case of braces: paragon is what is called an ideal.

Modules of trusses

- A left module over a truss $(A,[-,-,-], \cdot)$ is an abelian herd ($M,[-,-,-]$) together with a morphism of trusses

$$
\pi_{M}: A \rightarrow \mathcal{E}(M)
$$

- The action of A on $M, a \triangleright m:=\pi_{M}(a)(m)$, satisfies:

Distributive laws:

$$
\begin{gathered}
a \triangleright\left[m_{1}, m_{2}, m_{3}\right]=\left[a \triangleright m_{1}, a \triangleright m_{2}, a \triangleright m_{3}\right], \\
{[a, b, c] \triangleright m=[a \triangleright m, b \triangleright m, c \triangleright m],}
\end{gathered}
$$

Associative law:

$$
a \triangleright(b \triangleright m)=(a \cdot b) \triangleright m .
$$

Category of modules

- Morphisms of modules over trusses are defined as functions preserving the ternary operations and actions; category A - Mod.
- Right modules, bimodules defined analogously.
- A - Mod has a terminal object $T=\{0\}$ but not an initial object.
- A - Mod has cokernels, i.e. pushouts of

Category of modules

- A - Mod has quotients:
- Take a submodule N of M.
- Define an equivalence relation, for $m_{1}, m_{2} \in M$,

$$
m_{1} \sim_{N} m_{2} \quad \text { iff } \quad \exists n \in N,\left[m_{1}, m_{2}, n\right] \in N
$$

- $\bar{M}:=M / N:=M / \sim_{N}$,

$$
\left[\overline{m_{1}}, \overline{m_{2}}, \overline{m_{3}}\right]=\overline{\left[m_{1}, m_{2}, m_{3}\right]}, \quad a \triangleright \bar{m}=\overline{a \triangleright m}
$$

- Given a morphism of A-modules $f: M \rightarrow N$,

$$
\operatorname{coker}(f)=N / \operatorname{Im}(\mathrm{f})
$$

Induced submodules

Many constructions of modules over rings can be applied to trusses but not necessarily in a straightforward way.

- An A-module M an induced action: fix $e \in M$,

$$
a \triangleright_{e} m=[a \triangleright m, a \triangleright e, e] .
$$

- The element e is an absorber for \triangleright_{e}, i.e.

$$
\forall a \in A, \quad a \triangleright_{e} e=e
$$

hence \triangleright_{e} distributes over the binary operation \diamond_{e} on M.

- Different choices of e yield isomorphic modules.
- The kernel of $f: M \rightarrow N$ is an induced submodule of M.
- If N is a sub-herd of M, then M / N has an A-module structure such that $M \rightarrow M / N$ is a module morphism if and only if N is an induced submodule of M.

Induced submodules

Many constructions of modules over rings can be applied to trusses but not necessarily in a straightforward way.

- An A-module M an induced action: fix $e \in M$,

$$
a \triangleright_{e} m=[a \triangleright m, a \triangleright e, e] .
$$

- The element e is an absorber for \triangleright_{e}, i.e.

$$
\forall a \in A, \quad a \triangleright_{e} e=e
$$

hence \triangleright_{e} distributes over the binary operation \diamond_{e} on M.

- Different choices of e yield isomorphic modules.
- The kernel of $f: M \rightarrow N$ is an induced submodule of M.
- If N is a sub-herd of M, then M / N has an A-module structure such that $M \rightarrow M / N$ is a module morphism if and only if N is an induced submodule of M.

Endomorphism and matrix trusses

- For any A-module M,

$$
\operatorname{End}_{A}(M)
$$

is a truss in the same way as endomorphisms of an abelian herd.

- A^{n} is an A-module: for all $a=\left(a_{i}\right), b=\left(b_{i}\right), c=\left(c_{i}\right) \in A^{n}$, $x \in A$,

$$
[a, b, c]_{i}=\left[a_{i}, b_{i}, c_{i}\right], \quad(x \triangleright a)_{i}=x \triangleright a_{i}
$$

- $M_{n}(A):=\operatorname{End}_{A}\left(A^{n}\right)$ is a (matrix) truss.
- $\operatorname{End}_{A}\left(A^{n}\right)$ satisfy a brace-type distributive law between \diamond_{id} and \circ.

